Orde2Γ2. JIka A dan B matriks bujur sangkar sedemikian rupa sehingga A B = B A = I , Jika n = 2 atau 3, sudah menjadi kebiasaan untuk menggunakan istilah grup pasangan dan grup dari tiga secara respektif, daripada 2-grup topel atau 3- grup topel. Keitka n = 1, setiap n - grup topel terdiri dari satu bilangan real, sehingga R1 bisaMatematikaALJABAR Kelas 11 SMAMatriksDeterminan Matriks ordo 2x2Diketahui matriks A = 3 2 2 2 dan B = 1 2 1 3. Determinan matriks AB adalah ....Determinan Matriks ordo 2x2Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo konferensi sini terdapat soal sebagai berikut diketahui matriks A dan B kemudian determinan matriks AB adalah kita ketahui perkalian dua matriks yaitu jika matriks A B C D jika pqrs maka = a p + BR + b c + d r c + d s kemudian jika matriks A = abcd maka determinan matriks A = ad bc, maka matriks AB = matriks 3 2 2 2 * 113 = 3 * 1 + 2 * 13 * 2 + 2 * 32 * 1 + 2 * 12 * 2 + 2 * 3 = matriks 5 12 4 10 kemudian determinan AB = 5 kali 10 Min 4 x 12 = 50 Min 48 = 2determinan matriks a b = 2 yaitu B sampai jumpa di soal berikutnya
Operasimatriks terdiri dari 3 macam cara, sebagai berikut : Penjumlahan dan pengurangan dua matriks. Dua matriks dapat dijumlahkan atau dikurangkan ,jika ia mempunyai ordo yang sama. Contoh : karena M & N mempunyai ordo yang sama yaitu 2Γ2 Maka M & N bisa dijumlahkan atau dikurangkan sebagai berikut : Sifat yang ada pada penjumlahan MatriksYEMahasiswa/Alumni Universitas Jember19 Desember 2021 0634Jawaban A Halo Eni N, kakak bantu jawab ya Ingat rumus berikut ini A = [a b c d] Invers matriks A = A^-1 = 1/ad -bc [d -b -c a determinan matriks A = A = ad - bc A=[2 3 3 4] A^-1 = 1/24 - 33 [4 -3 -3 2] = -1[4 -3 -3 2]= [-4 3 3 -2] AC = B C =A^-1 B C = [-4 3 3 -2] [Γ’Λβ1 0 1 2] C = [4+3 0+6 -3-2 0-4] C = [7 6 -5 -4 C = -74 - -56 C = -28 + 30 C = 2 Oleh karena itu, jawaban yang benar adalah akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
Kelas 11 SMAMatriksInvers Matriks ordo 2x2Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo konferensi kita punya soal seperti ini maka untuk menentukan yaitu invers kemudian dipangkatkan 3 terlebih dahulu perhatikan tentukan dulu ya nanti tentukan invers matrik itu Misalkan kita punya matriks B = itu komponennya B1 B2 kemudian B3 kemudian B4 nah kemudian untuk menentukan matriks invers dari matriks B = matikan konsep itu kayak gini yaitu 1 dibagi dengan 1 kali b 4 b 1 kali keempat ini dikurangi dengan yaitu b. 3 x b 2 b 3 x b. 2. Iya nanti di sini dikali dengan Nah jadi dikali dengan bentuk itu serem. Jadi seperti ini yaitu disini B1 dan tempat ini ditukar di sini B4 kemudian di sini B1Kemudian diberi negatif yaitu negatif 2 negatif b. 3. Jadi konsumsinya itu seperti ini untuk menentukan invers dari matriks berordo 2 * 2 seperti itu selanjutnya kita tentukan dulu nih invers dari matriks A yang berarti sama dengan pakai Konsep ini tadi kita peroleh bahwa 1 dibagi dengan itu berarti 1 * 2 dikurang 3 * gratis ini kemudian dikali dengan jadinya di sini 2 dan 1 ditukarkan dijual di sini 1 - 3 - 00 kemudian sini kita peroleh tidak sama dengan yang ini hasilnya adalah 1 per 2 dikali dengan 2 - 3 kemudian 01 selanjutnya untuk membentuk seperti ini nanti jadi 1/2 ini kita kalikan dia dengan seluruh elemen yang berada pada materi Seni301 jadi seperti itu dia kan kita peroleh bahwa 2 / 2 adalah 1 negatif 3 x 1 per 2 - 3 per 2 kemudian 1 per 2 kali 1 per 2 kali 1/12 1/20 kemudian di sini ditentukan yaitu Bahwa a invers seperti itu kemudian ini dipangkatkan 3. Nah berarti kita bisa buat dia menjadi seperti ini aku sama dengan jadi dikalikan sebanyak 3 kali ya ini 1 - 3 per 2 Kemudian 01/20. Kemudian sini dikalikan dengan 1 kemudian negatif 3 per 2 kemudian 0. Selanjutnya di sini setengah kemudian dikali lagi di dengan 1 - 3 atau 2 kemudian 0 lanjutnya di sini setengah itu yang kita lanjut sini nanti di situ kita menggunakan konsep dari matriks berordo 2 * 2 jika matriks contohnya dua kali dua nih ya berarti kalau kita menggunakan konsep nanti perhatikan yang pertama ini untuk yang ini dulu dan yang ini ya Nah selanjutnya hasil dari ini kakak lagi di ini ini yang pertama itu adalah baris pertama kolom pertama itu satu ini dikalikan dengan 1 ikan yang konsepnya satu kali dan 1 Kemudian ditambahkan dengan YouTubers pertama kali pertama 0 sebagai baris pertama kolom kedua dikalikan dengan negatif 3 per 2 sebagai baris kedua kolom pertama negatif 32 adalah 0 kan di sini selanjutnya untuk baris kedua kolom pertama yang di sini ya Nah ini negatif 3 per 2 x dan 1 nah Berarti negatif 3 per 2 x dengan 1 lalu ditambah dengan selanjutnya nah ini 1/2 kita kalikan dengan negatif 3 per 2 jenis setengahX dengan negatif 3 per 2 Bagian untuk baris pertama kolom kedua yang di sini kita lihat dia di bagian sini berarti 1 x dengan 00 X dengan 1 per 21 kali 0 itu adalah 0 kemudian 0 ini di kalian 1/2 lagi itu kan konsepnya satu kali 0,0 kali 1 per 20 kali 1 per 2 adalah 0 juga kemudian di sini selanjutnya untuk baris kedua kolom kedua ini nanti negatif 3 per 2 kali kan dia dengan 0 hasilnya adalah 01 per 2 dikali dengan 1 per 21 per 2 kali 1 per 2 adalah 1 per 4 seperti itu berarti nanti di sini kita lihat kemudian dikalikan lagi dia dengan yaitu 1 - 3 per 2 kemudian 0 1/2 kita peroleh sama dengan hasilnyaItu adalah 1 kemudian yang ini nih itu negatif 3 per 2 di kali 1 negatif 3 per 2 kemudian 1 per 2 dikali dengan negatif 3 per 2 adalah negatif 34. Jadi ini nanti negatif 3 per 2 itu sama saja dengan negatif 64 negatif 64 dikurangi dengan 3/4 itu = negatif 9 per 4 - 94 kemudian sini 0 di sini adalah 1 per 4 kemudian kita kali lagi dengan terakhir negatif 3/20 1/2 itu dari sini kita peroleh hasilnya sama dengan tapi kan 1 x dan 1 pakai konsep perkalian matriks berordo 2 * 2 juga kan 1 * 12 adalah 1 kemudian 0 kali dengan negatif 3 per 2 itu adalah 00 negatif 9 per 4 x dan 1 adalah negatifkemudian 1 per 4 dikali dengan negatif 3 per 8 itu sama saya dengan nasi dikurangi dengan yaitu 3/8 sini 1 dikali dengan nol untuk baris pertama baris pertama sama kedua Tapi di kali 20 itu adalah 0 kemudian 0 dikali 1 per 20 juga kemudian sisi negatif untuk kedua kali kedua negatif 9 per 4 x 01 adalah 0 kemudian di sini 1 per 4 dikali 1 per 2 adalah 1/8 seperti ini ya berarti udah boleh = 1 kemudian yang ini itu hasilnya negatif 9 per 4 itu sama saja dengan negatif 18 per 14 per 4 kurangi dengan negatif 3 dikurang 3/8 itu adalah negatif 21 per 8 kemudian 01/8 jadi kita peroleh segitu adalah seperti ini sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Kelas 11 SMAMatriksOperasi Pada MatriksOperasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videojika kita mendapatkan soal seperti ini maka cara penyelesaiannya adalah kita ingat kembali matriks transpose matriks transpose adalah matriks yang mengubah dari baris menjadi kolom kita memiliki matriks A yaitu a b c d e f maka matriks transposenya atau transposenya nah disini kita akan mengubah yang tadinya baris menjadi kolom maka akan seperti ini yaitu kita Ubah menjadi a b c lalu maka ini matriks transposenya lalu selanjutnya disini kita akan menguraikan persamaan matriks ini jadi untuk persamaan matriks seperti ini dapat kita tulis menjadi seperti ini a dikurang B transpose akan = a transpose dikurang B transposeSehingga kita akan memiliki nilai dari matriks B ini diketahui di soal ada matriks A yang ordonya 2 * 2 memiliki angka 2 1 3 5 dan terdapat persamaan yaitu a. + b transpose = a dikurang B lalu ditransfusikan lalu yang ditanyakan adalah banyak sehingga dapat kita Tuliskan seperti ini a + b transpose = a dikurang B lalu ditransfusikan Nah untuk yang ini akan kita Ubah menjadi seperti ini Sehingga jika dituliskan adalah a. + b transpose = a transpose matriks B transpose jutek kita akan menambahkan Betran push di sebelah kanan dan di sebelah kiri lalu menambahkan negatif matriks A di sebelah kanan dan di sebelah3 jika dituliskan seperti ini a ditambah b + a + b transpose dikurang a. = a transpose dikurangi B transfus Halo ditambah B terus dikurang a sehingga persamaannya akan menjadi B push ditambah b transpose = a transpose dikurang a. Nah di sini dapat kita lihat ini akan menjadi 2 b. Transpose = a transpose dikurang a lah kita punya matriks A nya adalah ini lalu untuk a transposenya sama dengan kita ubah Ya tadinya baris menjadi kolom maka menjadi 2135Ini kita akan subtitusikan ke dalam persamaan ini untuk mendapatkan matriks b nya 3. Jika dituliskan di sini kita Tuliskan 2 b transpose = a transpose adalah 2315 lalu dikurangi dengan matriks A nya adalah 2 1 3 5 untuk menyelesaikan persamaan matriks yang dikurangi atau dijumlahkan disini untuk mencari barisnya yaitu dengan baris yang sama seperti baris ini dikurangi dengan baris yang ini sehingga akan diperoleh adalah 2 dikurang 2 adalah 0. Lalu 3 dikurang 1 adalah 2 + 1 dikurang 3 adalah minus 25 dikurang 5 adalah 0 Sehingga ini adalah 2B khususnya maka akan kita dapatkanb transpose = 1 per 2 buka kurung matriks dari 02 - 20 sehingga B transpose = Nah di sini cara penyelesaiannya adalah kita kalikan konstanta ini dengan matriks yang ada di dalamnya sehingga menjadi 1 per 2 dikali 0 adalah 0 per 2 dikali 2 adalah 1 1/2 kali kan dengan negatif 2 menjadi negatif 1 + 1 per 2 dikali akar 0 adalah 0, maka ini B transposenya untuk mendapatkan matriks baiknya kita transfusikan kembali matriks dari B transfernya jika dituliskan maka akan seperti ini B transpose kita transfusikan maka akan menghasilkan maka jika ditulis B transfusi ini adalah 01 - 10 hari ini belum kita teruskan untuk mendapatkan nilai baik Nya sehingga hasil dari100 kan ini b-nya menjadi yang tadinya baris kita Ubah menjadi kolom maka akan menjadi 0 - 110 sehingga inilah jawabannya maka jawabannya adalah sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi AntarmolekulContohSoal Matriks SMA Kelas 10 Pembahasan artikel kali ini mengenai contoh - contoh soal matriks untuk Sekolah menengah Atas kelas 9. Jika A = 2B t maka nilai z adalah. a . 2 b . 3 c . 5 d . 8 e . 10 jawaban : e . 10 Diketahui : Maka nilai c adalah sebagai berikut : 6 = 2x; x = 6/2 = 3 5y = 8x + 6 Dalambentuk matriks, transformasi rotasi di atas dapat dituliskan sebagai berikut. Jika kita lanjutkan dengan mengalikan kedua matriks di atas, akan diperoleh bentuk sebagai berikut. Perhatikan bahwa masing-masing komponen matriks di atas merupakan rumus trigonometri dari penjumlahan dua sudut. Jika disederhanakan akan menjadi bentuk sebagai Det(A) = (4 Γ 2 Γ 1) + (3 Γ 0 Γ 9) + (6 Γ 8 Γ 2) - (6 Γ 2 Γ 9) - (4 Γ 0 Γ 2) - (3 Γ 8 Γ 1) = -28 Jadi besar determinan dari matriks 3x3 tersebut bernilai -28. 2. Hitunglah nilai determinan dari matriks berordo 3x3 dengan metode minor kofaktor berikut! Baca Juga Cara Menghitung Determinan Matriks 4x4. Semoga bermanfaat jika AljabarLinier dan Matriks 3 2. Komponen Vektor Di dalam komponen sebuah vektor ada istilah yang disebut dengan ruang vektor. Misalkan apabila kita memiliki himpunan V memiliki operasi +, x maka Jika u dan v adalah objek - objek pada v maka u + v berada pada v. b. u + v = v + u c. u + (v + w) = (u + v) + w Denisi Matriks Elementer Matriks E disebut matriks elementer jika matriks tersebut didapat dari OBE matriks identitas sebanyak satu kali. Contoh Soal . Tentukan matriks elementer yang menyatakan: a. OBE matriks 2 Γ 2 yang menyatakan perkalian baris dua dengan-3. b. OBE matriks 4 Γ 4 yang menyatakan penukaran baris dua dan baris empat. c. JikaM matriks berordo 2 x 2 dan maka matriks M 2 adalah Pembahasan: Jawaban: C 25. Jika matriks adalah matriks Pembahasan: Jawaban: E. By Widi di January 25, 2017. Label: sma. Related Posts. 12 comments: Unknown 16 October 2018 at 23:26. kalo -5 β€ 2x ??? gmana min..bingung nihh. Reply Delete. Replies. Unknown 12 June 2019 at 22:49 03 dan adalah matriks berukuran 2Γ2. Jika det()= , maka det()=β― A. 6b B. 3b C. 2b D. E. 7. SNMPTN 2009/Dasar/283/6 Diketahui matriks - matriks berikut = 1 0 β1 β1 0 0, B = 2 β1 0 0 1 β1, C = 2 2 1 3 serta dan berturut-turut menyatakan transpose matriks dan invers matriks . Jika = dengan XL6BkLs.